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NX IXIMNI SENSITIVE LINEAR FEEDBACK COMPENSATORS ~-
Robert N. Crane Allen Rt. Stubberudiiii

The Johns Hopkins University School of Eftgineerift$I.ýL.-
Applied Physics Loboratory, University of CaliforniaX---

8621 Georgia Avenue Irvine, California 92664
Silver Spring, Md. 20910

Abstract
In the design of optiaai control systems. emphasis is placed on the

Izw4 accuracy of the system mathematical smodel. If certain modeling
,4 parameters -deviate from their assumed nominal values, the optimal

< 0_1 control may not produce-the desired output. A complete theory-is de-
veloped in this paper for-the practical design -of linear, !iomirnally
equivalent feedback compensators which minimize the output sensitivity
-to- sys parameter variations. An- exaimple-is presented to compareTIhes. compensators with those which regulate-and stabilize.

1.1 INTRODUCTI1ON 2.0 MINIMUM ý,ENSITIVE CONTROL

Ho4st-of the work on sensitivity reduction 2.1 PROBLEM SIATEMENT
-in -optimal control sysv-as -(reference 11

hasben ithth icluio o sesiivty The solution of an optimal control problem --

-terms in the -original cost function. Th" vrtetm nevl(,)cnb e
technique trades off the primary design ob- srbdb ~~floigdfeeta
jcctives for sanuitivity reductioni. Toutin
-achieve the latter, however,. a significant n Lt,,,) d)-()

* deviation from the design goals is usually where xu and. are of dimensions 71, r and
-required.- In addition, the original opti- n epcieyadtesbcitn repre-
sal con-.rol cannot be realized when the *sents rominal or design values. The funic-
moa aaees~oa hi o~ltion f(-) is assumed to be continuous in t

values.aa CU RT x, u-and nj. The solution of (1)

' In-this paper, a complete theory for the is siven by:
practical design of linear feebk cope- (t-Z'd -a (t) (2)
saters-which-minimize output sensitivity is ~c-i h eie pia rjcoy
-developed. Feedback is u'fed as a second d-e- %lien the-oyptinal control is implemented in
gSre. of freedom in the oistinal control prob- the actual syztem, variations in modeling

paramete-5 A a a-a may z.esult in the out-
funtio. Tis untic isdetrmied put x~t) devicting significantly from the

miniizi~ te~mmn suar ~fd f~id 4*sirQ~d oivtput a (t). To reduce the output
-value first-order sensitivity with a cor- errors caused by parameter variations, a
responding livAitation on -lie requirod feed- ni..inally equivalent feedback control func--
-back- effort. -Necessary 'and sufficient condi- tior. is defined us follows: -

tirsare 4evcloped from'which an *xp~icit
t ~~noviterative solution is obtained for the !~~)uu()*Ktxt 3

linear--feedbatk gaii, term. A comparison ex- where K(t) is an (r x n) matrix of time
ýample is presented to shou the superior functiona ard u1 Ct) is determined such that
-sensitivity reduction-characteristics of tlbe ut_

-minimum tensitive gain function relative to
The corresonding closed loop system. is

-~~ :egclating and 3tabilzing contri~s..

AP1pro-ved--ror INbi 65? 7-~4



tz'thu JM (1/Z)s (T)Ds(1I) + (1l/2), [ Q

NY- f(t'x~u(tax),n); 1(O)- CSn () r a 22(7

where n is the actual parameter vector. As- im *j l ijK iii

suming that initial condition errors are
accuntd fr i u~t) th prble isto which effectively trades off the cost of

deo utermi for t n su t) that f ror lemal van feedback for reductions in output sensitly-
ity. The problem is thus to deternine K(t)

TAations an from the fiomina! parameteran,_l such-that (7) is minimizea subject to (6).
the actual trajer.tory E(t) remains close to

!s()over the criginal optimization in~- 2.2 NECESSARY AND SUFFICIENT CONDITIONS
terval. It is assumed that ni is known to Necessary -conditions for this problem can

withn a calr C~lstat~ie., ~ -be obtained from straightforward applica-
whereo is an unknown magnitude operating to fvrainlm~hd ie n[]

Aino aitoa eýhd-ie n1)

through a known di-ection '". From equations The Hamiltonian is defined as follows:
(3) and (5), the first order sensitivity r T n

vco (t) relative to T is described by HI (t,!,K,p Ia T~ 1
vetra to a i i

s-A(t)s. B(t)Ktt)l + 1(t); s(o)u~ (6) ,T[A* s*gJ()

where A, B and I represent the-partial de- Ts= ti, ~
rivatives of (5) WRT-?E,1(-) and n respec- aegvnb pia ancmoet
tively evaluated alonZg the nominal. The- ap i

initial value of the sensitivity vector a 1 9
will normally be zero since the parameterR
will usually riot affect the initial state wt aoia qain

41,2 2--Ag 2.. ; P. (T) a -D(T) (10)
and *T

-The sensitivizy cost function is defined as s As + BVBT F,; 1(b)O0 (11-)
follows. Two seastrars of output sensitivity whetI (xr)m rxVisdiedb
are

mean !iquare a(1/2)1iT sT qdt
0 {iILIR Jay

final vallue (1'/2)JIT MMDsT V ~2
*where Q ard D are positive s*imidfnt 0)t

matrices which are continuous in timo. The The camoical equations are time invariant
system error is limited byw restricting theC whenevcr the s4aisitivity equations and cost
-amount of feedback ):(t)x(t) or equivalently matrices are independ~ent of time-. The lina-
X(t)l(t). This restriction can-e nlue arity theteforo .Ullws a closed form solu'
in the cost by the addition of tion-for the Sginr terms given by_(9)ý Note

T T that since a ~0 any value of K(O) will
satify he ptimality conditions. 14prc

where Rip0 and continuous in time Vij_ tic., Lowever, an initial bound must be t
tThis restricts eack state feedback copoý determined for K(t). The Legendre conZgf_'A

eat of the -control. The -function F1 can be is obtained from (Q) AS
combined with the output sensitivity meas- .,ij 2  0
ures to -iel*d the following cost functional (3

S'IdKJSK, 5  0 -ijt,

Af
di' 1_26
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The Weierstrass nocessary ~cnditi9n ;.s iS- 3.1 NIECESSARY AND SUFFICIENT CONDITIONS
r- Vied by(13) when the extremal is-non- ~ i o 9 n 1)rvasta

singular (reference [2]). Sufficient condi- snuaiisi h pia anaesn

tions are defined by the following theorem:*I
Theorem 1: The gain matrix C(t) given by onymouswihsgua tras.TeCt

function (7) will therefore be modified to -
(9),(0 n 1)eit n(,Ia include a penalty term for large feedback
minirum of (7) subject to (6) ifgan asflo:

2():5 tc (0,T] (14) j(K) I sTD(T +11 T~ T ~ d

where s Mt is the jth coaponent of the with r(5
solution to (6). G* Z E(R..K..2S2 +E 1 X~2)
Proof: From (13) and (14), reference [2] ~ii1 3 3 ~ i

indicates that sufficient conditions are adB,0Vij h aitna o h
satisfied if there Are no conjugate poi~nts. i

problem of minmizing (15) subject*to -(6) is-Since tht matrices D, Q and R are positive V T -G~nLs*u

semi-definite, it can be shown that no con- GztKp p-

Julate points exist. This completes the (16)

proof. Using this,* the optimal gain components are

From the above theorem, the existence of by ii

r-the miniaum se-nsitive gain is determined Ku LZ Ptti (17)
mainly by (141 which is a sonmewhat strongRij* -

-condition and definitely not satisfied for with canonical equations
-arbitrary-cost parameters D, Q avid R in T
(7) and a.~bitfary functions 1L(t) in (11).- 2*A , Q +usp;2(T) s' -(T) (8

andThis is, however, the price oi achieving

linearity'oE the canonical equations (1-0)As*- -- ;so) 0 ()I
ond (11). For a gtven system, cost function where the components of!a are defined by

and nominal trajectory, these eqain can r Eis -
-onsily be solved to determine if (14) is -s~ 12 InII~ (20)

,S(20)Xsatilfied. If not, the nonsingular approxi- 133 ij~
mate problem Formulated in The next section and the (r x r) matrix Z is defined by

can-be employed to obtain the optimal gain. S s 2

3.0 A POWN5INGULAR SENSITIVII'Y PROBLE4 (mai R s2 + E

The. results of the previous section indi- ty- (21)

cat* that singular solutions of the minimau0
Acýsensitivity- problem are the major cause for The canonical equations are thus nonlinear~

failure of the existence cozvditionsý The insad .Th Lgerecntonsob

problem will be reformulated in this sec,' tamned from (lCQ
tion such that all exteemals are nonsungu-

2
lat. As a consequence, the canonical aqua-- 3 M2IKij )K,. M

- tIons becone nonlinear and must be solved

be approximation or iter~tive techniques. j(Ri s j Co ins.. 3aM

0 otherviise. (2



The Weierstrass necessary condition is im- where T1 e (O,T) is a design parameter and
plied by (22) since the extremal is non- _(t) 0tlT 1 (
singular. s(t)= 2 Ct) TtT (2)

The existence of the optimal gain can be
directly proven using Theorem S of 13]. Equations (23) - (25) can be explicitly
With some manipulation, all required by- solved as a coupled system. The optimal gain
potheses can be shown to apply. The most K(t) is then determined by (17).
difficult is the determination of the con- The relationship between the approximate
Stant C for the system and cost inequali- solution given above and that of the singular
ties. This can easily be obtained if the problem described in Section 2.0 is as fol-
term lows. The approximation effectively reduces

9 a [O,T] 1g(t)f the time interval of optimization and, in

i.s added to the cost J(K), noting that the doing so, generates an initial sensitivity
minimizing gain will be unaltered. Cesari's vector consistent with 1 (t). The problem re-
Thecrem is also applicable to the vector sulting from some componentj of s(t) approach-
case when R 0, i,j. In general R -> 0 ing zero on (T1,T] still remains, although
for sowe i,j- and then the theorem cannot be this in part dictates the choice of T1. When
applied since the gain and staze- telms are this 9,ccurs, the approximation of Z by V on
not functionally separable. It is probable, (T1 ,T] is no longer valid. The choice of TI
however, that a slight modification can be is further complicated by the fact that the
made to the theorem to prove existence for desired oUtput sensitivity may not be at-
the general case. tained if TI is too large. When this approxi-

marion cannot be used, recourse must be made3.2 SOLUTION TECHNIQUES
tc iteration techniques.

Since the canonical equations (18) end (19)
4.0 COMPARISON EXAMPLEare nonlinear, they must be slved either

by iteration (gradient) or approximation The question examined in this section is
techniques. I it is assumed that E is how much better does the minimum sensitive
small Visj and that the sensitivity.terms in 045) gain perForm relative to regulator (RG)
the coit hive sufficieut weight such that Pnd stabilizing (ST) gains? A first order
1_(t) is smalli then (18) and (19) can be example will be described below.
apprzximated by a set of linear equations. Let the original design system (nominal) be
These assumptions result in _a(*)=0 over given by
[O,T]. Since Eij. 0 4i,j and s(O) - 0, f21)
indicates that Z(3 ,E) - 0. The sensitivity x an x u; x(0) 10 (26)

equation (19) thnrefore initially runs open where an 1 1 and un(t) is determined from
loop. As th~e magnitude of s(t) iucreases, -m i1 1

the-matrix Z(sE) approaches V for small T -f (x 2  ."2u 2 )dt (27)
Ei. Equations (It) and (19) will thus be From Section 2.0, the feedback compensator

approximated as follows: is given by

P. -A + QS; P.(T) a - 13(T) (23) u(t) - un(t) * k(t)(y(t) - xn(t)] (28:
'= £- * , ;i(0)-b ;OstlT1  where xn is the optimal solution of (26).

(24) The actual (real world) system is tepre-
S -;s-T)s-(T);TIct"T seated-by

x f



y - 1.2y * u(t) ; y(0) 10 (29) improvement over regulator and stabilizing

where the parameter was varied 20 ptrcent gains when parameter variaticns occurred.
in thq unstable direction. Two measures of

s~sten error are- 1 .I,

-Han Square I f' (y-xn)2dt (30) Parameter Value
2c: q -5-40, d 0

Final Value - I (l)-xn 1)l . S. S T 2-s

The cost of using feedback is measured by Ns ST "

Feedback Cost f I (t-Un) 2 dt * (•) ý-t -4 1Loop

Note that if (29) is ru open loop (k(t)-0) NN

then amun and no cost penalty is incurred.

The MS compensator is determined as a solu- 0-
S.2 .4 .6 .I .0 1.2

tion to the =ollowing problem at• cost

ids2(1) 1 1 k+s)dtl (32) .. lre 1. Mesa Square Error Comprison Curves
S0 t-j

subject to
s -as - +Rs + xn(t) ; %(ON - 0 (33) P -r-ee I II US: q.I::,do

which co rresponds to that posed in Section 3A: s -4. d 0
2.0. The regulator gain can aiso be ob- UT

tained from (32) and (33) but with xn(t).0 -

iund s(0)O0. For the first order case, the R G

stabilizing gain is a negative constant. .4 -- -

The comparison curves for the minimum sensi---1._ 0, Open
tire, regulavor and :tabilizing gains are Er+or -

shoin in Figures 1 and 2. For this example, 0 .2 .4 A .8 1.0 1.2

a suitable goal for erroer reduction with fedback Col-t

feedback was taken as 10 percent of the u 2 Fina f Coaprisa omvog

open loop error. To achieve this reduction, I
the figures indicate that the minimum sensi-

tive gain requires at least 30 percent less

feedback effort than the regulator and REFERENCES
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